GENERAL NOTES FABRICATION SHALL BE IN ACCORDANCE WITH METAL BUILDING SUPPLIER, STANDARD PRACTICES IN COMPLIANCE WITH THE APPLICABLE SECTIONS, RELATING TO DESIGN REQUIREMENTS AND ALLOWABLE STRESSES OF THE LATEST EDITION OF THE "AWS STRUCTURAL WELDING CODE D1.1 | 1.2 | MATERIALS | ASTM DESIGNATION | MIN. YIELD STRENGTH | |-----|---|------------------|-----------------------| | | HOT ROLLED STEEL SHAPES (W, & C)
HOT ROLLED STEEL ANGLES (L) | A572 | Fy = 50 KSI | | | HOT ROLLED STEEL ANGLES (L) | A36 | Fy = 36 KSI | | | STEEL PIPES | A500 | Fy = 42 KSI | | | STRUCTURAL TUBING | A500 | Fy = 42 KSI | | | STRUCTURAL STEEL WEB PLATE | A572/A1011 | Fy = 50 KSI | | | STRUCTURAL STEEL FLANGE PLATES/BARS | A529/A572 | Fy = 55 KSI | | | COLD FORMED LIGHT GAGE | A653/A1011 | Fy = 55 KSI | | | ROOF & WALL SHEETS | A792/A653 | Fy = 50, 80 KSI | | | CABLE BRACE | A475 - TYPE 1 | EXTRA HÌGH STRENGTH | | | ROD BRACE | A36 | Fy = 36 KSI | | | | | MIN. TENSILE STRENGTH | MACHINE BOLTS & NUTS HIGH STRENGTH BOLTS (1"ø & LESS) HIGH STRENGTH BOLTS (>1"ø TO 1 1/2"ø) ANCHOR BOLTS (NOT SUPPLIED BY M.B.S.) A36/A307/F1554 Fu = 60 KSI Fu = 120 KSI Fu = 105 KSI 1.3 PRIMER SHOP PRIMER PAINT IS A RUST INHIBITIVE PRIMER WHICH MEETS THE END PERFORMANCE OF FEDERAL SPECIFICATION SSPC NO. 15 AND IS GRAY OXIDE IN COLOR. THIS PAINT IS NOT INTENDED FOR LONG TERM EXPOSURE TO THE ELEMENTS. METAL BUILDING SUPPLIER IS NOT RESPONSIBLE FOR ANY DETERIORATION OF THE SHOP PRIMER PAINT AS A RESULT OF IMPROPER HANDLING AND/OR JOBSITE STORAGE. METAL BUILDING SUPPLIER SHALL NOT BE RESPONSIBLE FOR ANY FIELD APPLIED PAINT AND/OR COATINGS. (AISC CODE OF STANDARD PRACTICE, LATEST EDITION). NOMINAL THICKNESS OF PRIMER WILL BE 1 MIL UNLESS OTHERWISE SPECIFIED IN CONTRACT DOCUMENTS. - .4 GALVANIZED OR SPECIAL COATINGS: SEE CONTRACT DOCUMENTS - 1.5 ALL BOLTS ARE 1/2" # x 0"-1 1/4" A307 EXCEPT: A) ENDWALL RAFTER SPLICE 5/8" # x 0"-1 3/4" A325-N B) ENDWALL COLUMN TO RAFTER CONNECTION (SEE WALL ELEVATION) C) MAIN FRAME CONNECTIONS - SEE CROSS SECTION D) FLANGE BRACECONNECTIONS - 1/2" x 0'-1 1/4" A325 - NOTE: WASHERS ARE NOT SUPPLIED UNLESS NOTED OTHERWISE ON DRAWING ### .6 A325 BOLT TIGHTENING REQUIREMENTS ALL HIGH STRENGTH BOLTS ARE A325-N UNLESS SPECIFICALLY NOTED OTHERWISE. HOLES ARE NOT SLOTTED AND DESIGN IS BEARING CONNECTION. STRUCTURAL BOLTS SHALL BE TIGHTENED BY THE "TURN-OF-THE-NUT" METHOD IN ACCORDANCE WITH THE LATEST EDITION AISC "SPECIFICATION FOR STRUCTURAL JOINTS" USING ASTM A325 OR A490 BOLTS, WHEN SPECIFICALLY REQUIRED. A325-N BOLTS ARE SUPPLIED WITHOUT WASHER UNLESS OTHERWISE NOTED ON THE DRAWINGS. ALL BOLTED CONNECTIONS UNLESS NOTED ARE DESIGNED AS BEARING TYPE CONNECTIONS WITH BOLT THREADS NOT EXCLUDED FROM THE SHEAR PLANE. BUILDINGS IN SEISMIC DESIGN CATEGORY C OR LOWER AND/OR WITH CRANE SYSTEMS 10 TONS OR LESS DO NOT REQUIRE TURN OF THE NUT PRE TENSIONING - .7 CLOSURE STRIPS ARE FURNISHED (IF ORDERED) FOR APPLICATION: - INSIDE— UNDER ROOF PANELS & BASE OF WALL PANELS OUTSIDE— BETWEEN ROOF PANELS & RIDGE CAP - BETWEEN WALL PANELS & EAVE/GABLE TRIM ERECTION NOTE: ALL BRACING, STRAPPING, & BRIDGING SHOWN AND PROVIDED BY M.B.S. FOR THIS BUILDING IS REQUIRED AND SHALL BE INSTALLED BY THE ERECTOR AS A PERMANENT PART OF THE STRUCTURE. IF ADDITIONAL BRACING IS REQUIRED FOR STABILITY DURING ERECTION, IT SHALL BE THE ERECTOR'S RESPONSIBILITY TO DETERMINE THE AMOUNT OF SUCH BRACING AND TO PROCURE AND INSTALL AS NEEDED. # ERECTION AND UNLOADING NOT BY G.W.B. 1.10 SHORTAGES ANY CLAIMS OR SHORTAGES BY BUYER MUST BE MADE TO M.B.S. WITHIN FIVE (5) WORKING DAYS AFTER DELIVERY, OR SUCH CLAIMS WILL BE CONSIDERED TO HAVE BEEN WAIVED BY THE CORRECTIONS OF ERRORS AND REPAIRS (MBMA 6.10) CLAIMS FOR CORRECTION OF ALLEGED MISFITS WILL BE DISALLOWED UNLESS M.B.S. SHALL HAVE RECEIVED PRIOR NOTICE THEREOF AND ALLOWED REASONABLE INSPECTION OF SUCH MISFITS. THE CORRECTION OF MINOR MISFITS BY THE USE OF DRIFT PINS TO DRAW THE COMPONENTS INTO LINE, MODERATE AMOUNTS OF REAMING, CHIPPING AND CUTTING, AND THE REPLACEMENT OF MINOR SHORTAGES OF MATERIAL ARE A NORMAL PART OF ERECTION AND ## BUYER/END USE CUSTOMER RESPONSIBILITIES - IT IS THE RESPONSIBILITY OF THE BUYER/END USE CUSTOMER TO OBTAIN APPROPRIATE APPROVALS AND SECURE NECESSARY PERMITS FROM CITY, COUNTY, STATE, OR FEDERAL AGENCIES AS REQUIRED, AND TO ADVISE/RELEASE M.B.S. TO FABRICATE UPON RECEIVING - METAL BUILDING SUPPLIER (HEREAFTER REFERRED TO AS M.B.S.) STANDARD SPECIFICATIONS APPLY UNLESS STIPULATED OTHERWISE IN THE CONTRACT DOCUMENTS. MB.S. DESIGN, FABRICATION, QUALITY CRITERIA, STANDARDS, PRACTICE, METHODS AND TOLERANCES SHALL GOVERN THE WORK WITH ANY OTHER INTERPRETATIO THE CONTRARY NOTWITHSTANDING, IT IS UNDERSTOOD BY BOTH PARTIES THAT THE BUYER/FAID USE CUSTOMER IS RESPONSIBLE FOR CLARIFICATION OF INCLUSIONS OR EXCLUSIONS FROM THE ARCHITECTURAL PLANS AND/OR SPECIFICATIONS. - IN CASE OF DISCREPANCIES BETWEEN M.B.S. STRUCTURAL STEEL PLANS AND PLANS FOR OTHER TRADES, M.B.S. PLANS SHALL GOVERN. (SECTION 3 AISC CODE OF STANDARD PRACTICES, LATEST EDITION) - APPROVAL OF M.B.S. DRAWINGS AND CALCULATIONS INDICATE THE M.B.S. HAS CORRECTLY INTERPRETED AND APPLIED THE CONTRACT DOCUMENTS. THIS APPROVAL CONSTITUTES THE CONTRACTOR/OWNERS ACCEPTANCE OF THE M.B.S. DESIGN CONCEPTS, ASSUMPTIONS, AND LOADING. (SECTION 4 AISC CODE AND MBMA 3.3.3) - ONCE THE BUYER/END USE CUSTOMER HAS SIGNED M.B.S. APPROVAL PACKAGE AND THE PROJECT IS RELEASED FOR FABRICATION, CHANGES SHALL BE BILLED TO THE BUYER/END USE CUSTOMER INCLUDING MATERIAL, ENGINEERING AND OTHER COSTS. AN ADDITIONA FEE MAY BE CHARGED IF THE PROJECT MUST BE MOVED FROM THE FABRICATION AND - 2.6 THE BUYER/END USE CUSTOMER IS RESPONSIBLE FOR OVERALL PROJECT COORDINATION. THE BUTER/END USE CUSTOMER IS RESPONSIBLE FOR OVERALL PROJECT COURDINATION. ALL INTERFACE, COMPATIBILITY, AND DESIGN CONSIDERATIONS CONCERNING ANY MATERIALS NOT FURNISHED BY M.B.S. AND M.B.S. STEEL SYSTEM ARE TO BE CONSIDERED AND COORDINATED BY THE BUYER/END USE CUSTOMER. SPECIFIC DESIGN CRITERIA CONCERNING THIS INTERFACE BETWEEN MATERIALS MUST BE FURNISHED BEFORE RELEASE FOR FABRICATION OR M.B.S. ASSUMPTIONS WILL GOVERN (AISC CODE OF STANDARD PRACTICE, LATEST EDITION) - 2.7 IT IS THE RESPONSIBILITY OF THE BUYER/END USE CUSTOMER TO INSURE THAT M.B.S. PLANS COMPLY WITH THE APPLICABLE REQUIREMENTS OF ANY GOVERNING BUILDING AUTHORITIES. THE SUPPLYING OF SEALED ENGINEERING DATA AND DRAWINGS FOR THE METAL BUILDING SYSTEM DOES NOT IMPLY OR CONSTITUTE AN AGREEMENT THAT M.B.S. OR ITS DESIGN ENGINEERS ARE ACTING AS THE ENGINEER OF RECORD OR DESIGN PROFESSIONAL FOR A CONSTRUCTION PROJECT. THESE DRAWINGS ARE SEALED ONLY TO CERTIFY THE DESIGN OF THE STRUCTURAL COMPONENTS FURNISHED BY M.B.S. - 2.8 THE BUYER/END USE CUSTOMER IS RESPONSIBLE FOR SETTING OF ANCHOR BOLTS AND ERECTION OF STEEL IN ACCORDANCE WITH M.B.S. "FOR ERECTION" DRAWINGS ONLY. TEMPORARY SUPPORTS SUCH AS GUYS, BRACES, FALSEWORK, CRIBBING OR OTHER ELEMENTS REQUIRED FOR THE ERECTION OPERATION SHALL BE DETERMINED, FURNISHED AND INSTALLED BY THE ERECTOR. NO ITEMS SHOULD BE PURCHASED FROM A PRELIMINARY SET OF DRAWINGS, INCLUDING ANCHOR BOLTS. USE ONLY FINAL "FOR ERECTION" DRAWINGS FOR THIS USE. (AISC CODE OF STANDARD - 2.9 METAL BUILDING SUPPLIER IS RESPONSIBLE FOR THE DESIGN OF THE ANCHOR BOLTS TO PERMIT THE TRANSFER OF FORCES BETWEEN THE BASE PLATE AND THE ANCHOR BOLT IN SHEAR, BEARING AND TENSION, BUT IT IS NOT RESPONSIBLE FOR THE TRANSFER OF ANCHOR BOLT FORCES TO THE CONCRETE OR THE ADEQUACY OF THE ANCHOR BOLT IN RELATIONTO THE CONCRETE. UNLESS OTHERWISE NOTED PROVIDED IN THE ORDER DOCUMENTS, M.B.S. DOES NOT DESIGN AND IS NOT RESPONSIBLE FOR THE DESIGN, MATERIAL AND CONSTRUCTIONOF THE FOUNDATION OR FOUNDATION EMBEDMENTS. THE END USE CUSTOMER SHOULD BE ASSURE HIMSELF THAT ADEQUATE PROVISIONS ARE MADE IN THE FOUNDATION DESIGN FOR LOADS IMPOSED BY COLUMN REACTIONS OF THE BUILDING, OTHER IMPOSED LOADS, AND BEARING CAPACITY OF THE SOIL AND OTHER CONDITIONS OF THE BUILDING SITE. IT SRECOMMENDED THAT THE ANCHORAGE AND FOUNDATION OF THE BUILDING BE DESIGNED BY A REGISTERED PROFESSIONAL ENGINEER EXPERIENCED IN THE DESIGN OF SUCH STRUCTURES. (LATEST MBMA LOW RISE BUILDING SYSTEMS MANUAL) - 2.10 NORMAL ERECTION OPERATIONS INCLUDE THE CORRECTIONS OF MINOR MISFITS BY MODERATE AMOUNTS OF REAMING, CHIPPING, WELDING OR CUITING, AND THE DRAWING OF ELEMENTS INTO LINE THROUGH THE USE OF DRIFT PINS. ERRORS WHICH CANNOT BE CORRECTED BY THE FOREGOING MEANS OR WHICH REQUIRE MAJOR CHANGES IN MEMBER CONFIGURATION ARE TO BE REPORTED IMMEDIATELY TO M.B.S. BY THE BUYER/END USE CUSTOMER, TO ENABLE WHOEVER IS RESPONSIBLE ETHER TO CORRECT THE ERROR OR TO APPROVE THE MOST EFFICIENT AND ECONOMIC METHOD OF CORRECTON TO BE USED BY OTHERS. (AISIC CODE OF STANDARD PRACTICE LATEST EDITION) - 2.11 NEITHER THE FABRICATOR NOR THE BUYER/END USE CUSTOMER WILL CUT, DRILL OR OTHERWISE ALTER HIS WORK, OR THE WORK OF OTHER TRADES, TO ACCOMMODATE OTHER TRADES, UNLESS SUCH WORK IS CLEARLY SPECIFIED IN THE CONTRACT DOCUMENTS. WHENEVER SUCH WORK IS SPECIFIED, THE BUYER/END USE CUSTOMER IS RESPONSIBLE FOR FURNISHING COMPLETE INFORMATION AS TO MATERIALS, SIZE, LOCATION AND NUMBER OF ALTERATIONS PRIOR TO DEPOND AND ALTER ALSO, SIZE, LOCATION AND NUMBER OF ALTERATIONS PRIOR TO PREPARATION OF SHOP DRAWINGS. (AISC CODE OF STANDARD PRACTICE LATEST EDITION) - 2.12 <u>Warning</u> in no case should galvalume steel panels be used in conjunction with lead or copper. Both lead and copper have harmful corrosive effects on the galvalume alloy coating when they are in contact with galvalume steel panels. Even Rin-off from copper flashing, wiring, or tubing onto galvalume should be - 2.13 SAFETY COMMITMENT. METAL BUILDING SUPPLIER HAS A COMMITMENT TO MANUFACTURE QUALITY BUILDING COMPONENTS THAT CAN BE SAFELY ERECTED. HOWEVER, THE SAFETY COMMITMENT AND JOB SITE PRACTICES OF THE ERECTOR ARE BEYOND THE CONTROL OF M.B.S. IT IS STRONGLY RECOMMENDED THAT SAFE WORKING CONDITIONS AND ACCIDENT PREVENTION PRACTICES BE THE TOP PRIORITY OF ANY JOB SITE. LOCAL, STATE, AND FEDERAL SAFETY AND HEALTH STANDARDS SHOULD ALWAYS BE FOLLOWED TO HELP INSURE WORKERS SAFETY. MAKE CERTAIN ALL EMPLOYEES KNOW THE SAFEST AND MOST PRODUCTIVE WAY OF ERECTING A BUILDING. EMERGENCY PROCEDURES SHOULD BE KNOWN TO ALL EMPLOYEES. BUTLY MEETINGS HIGHLIGHTING SAFETY PROCEDURES ARE ALSO RECOMMENDED. THE USE OF HARD HATS, RUBBER SOLE SLOSE FOR BOOSE BO SOLE SHOES FOR ROOF WORK, PROPER EQUIPMENT FOR HANDLING MATERIAL, AND SAFETY NETS WHERE APPLICABLE, ARE RECOMMENDED. - 2.14 ROOF DRAINAGE SYSTEMS (GUTTER, DOWNSPOUTS, ETC.) MUST BE FREE OF ANY OBSTRUCTION TO ENSURE SMOOTH OPERATION AT ANY GIVEN TIME. - 2.15 IT IS RECOMMENDED BY FACTORY MUTAL (REFERENCE B2.44) THAT ROOFS BE CLEARED OF SNOW WHEN HALF OF THE MAXIMUM SNOW DEPTH IS REACHED. THE MAXIMUM SNOW DEPTH CAN BE ESTIMATED BASED ON THE DESIGN SNOW LOAD AND THE DENSITY OF SNOW AND/OR ICE BUILDUP, SSE TABLE BELOW. | ROOF SNOW LOAD
(IN PSF) | EQUIVALENT SNOW HEIGHT AT ROOF
(IN INCHES) | RECOMMENDED SNOW HEIGHT
WHEN SNOW REMOVAL SHOULD START
(IN INCHES) | | | | | | |----------------------------|---|--|--|--|--|--|--| | 20 | 16.60 | 8.30 | | | | | | | 25 | 17.25 | 8.62 | | | | | | | 30 | 17.90 | 8.95 | | | | | | | 35 | 18.55 | 9.28 | | | | | | | 40 | 19.20 | 9.60 | | | | | | | 45 | 19.85 | 9.92 | | | | | | | 50 | 20.50 | 10.25 | | | | | | | 55 | 21.15 | 10.58 | | | | | | | 60 | 21.80 | 10.90 | | | | | | | 65 | 22.45 | 11.22 | | | | | | | 70 | 23.10 | 11.55 | | | | | | | 75 | 23.75 | 11.88 | | | | | | | 80 | 24.40 | 12.20 | | | | | | FOR SNOW/ICE REMOVAL PROCEDURE, REFER TO METAL BUILDING SYSTEM MANUAL 2002 EDITION, SECTION A8.4, PAGE XI-A8-2 ### BUILDING LOADS THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH THE FOLLOWING AS INDICATED: **DESIGN LOADS:** DESIGN CODE / WIND CODE : IBC-18 OCCUPANCY / RISK CATEGORY : II-Normal **ENCLOSURE** : Enclosed ROOF DEAD LOAD (D) (PSF) : 2.00 ROOF COLLATERAL LOAD (C) (PSF) : 1.00 WIND LOAD ULTIMATE WIND SPEED, (VULT) (MPH) :115.00 WIND EXPOSURE CATEGORY : C INTERNAL PRESSURE COEFFICIENT, (GCpi) :0.18/-0.18 WALL PANEL DESIGN WIND PRESSURE (PSF) : 27.78/-30.14 WIND ENCLOSURE CLASSIFICATION : Enclosed LIVE LOAD FLOOR PRIMARY FRAMING (PSF) : 20.00 TRIB. AREA REDUCTION :No SECONDARY FRAMING (PSF) : 20.00 SNOW LOAD 2 GROUND SNOW LOAD, (Pg) (PSF) ROOF SNOW LOAD, (Pf) (PSF) :10.00 STERNBU B 80014 :10.00 ARKER SNOW EXPOSURE FACTOR, (Ce) :1.00 SNOW IMPORTANCE FACTOR, (Is) :1.00 3033 S. PARK AURORA. CO E PHONE: (800). WWW.GREATWES (800) THERMAL FACTOR, (Ct) : 1.20 SEISMIC LOAD <u>, [Ľ</u> SEISMIC IMPORTANCE FACTOR, (Ie) :1.00 SITE CLASSIFICATION : D SHE SPECTRAL RESPONSE ACCELERATION :Ss = 0.166 :S1 = 0.068SPECTRAL RESPONSE COEFFICIENTS : Sds = 0.177 : Sd1 = 0.109SEISMIC DESIGN CATEGORY : B \mathcal{M} :STEEL SYSTEM NOT SPECIFICALLY BASIC SEISMIC FORCE RESISTING SYSTEM DETAILED FOR RESISTANCE 93303 Ö :RIGID FRAMES (OMF) :BRACED FRAMES (OCBF/OMF) 93302, :LONGITUDINAL = 1.67 TOTAL DESIGN BASE SHEAR, (V) (KIPS) 0 :TRANSVERSE = 1.68 93301, :RIGID FRAMES = 3.00 $\Omega = 3.00$ RESPONSE MODIFICATION FACTORS, (R) :SW X-BRACING = 3.00 $\Omega = 3.00$ 93300, SEISMIC RESPONSE COEFFICIENTS, (Cs) :RIGID FRAMES = 0.0591Ž Z $\overline{\mathsf{O}}$:SW X-BRACING = 0.0591 \sim BUIL ANALYSIS PROCEDURE USED : EQUIVALENT LATERAL FORCE PROCEDURE 93299, OTHER LOADS/REQUIREMENTS **BUILDING DESCRIPTION:** : 50.00 WIDTH (FT) LENGTH (FT) :100.00 EAVE HEIGHT AT BSW (FT): 10.00 EAVE HEIGHT AT FSW (FT): 10.00 ROOF SLOPE AT BSW : 3.0:12 ROOF SLOPE AT FSW : 3.0:12 BAY SPACING (FT) :4 AT 25 **COVERING AND TRIMS:** ROOF PANELS & TRIMS: 26 GA. PBR PANEL BY OTHERS. WALL PANELS & TRIMS: 26 GA. PBR PANEL BY OTHERS. INSULATION **ROOF INSULATION** :N/A THIS SEAL PERTAINS ONLY TO THE MATERIALS WALL INSULATION :N/A DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS, THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS # NOIF MINOR FIELD WORK OF STRUCTURAL, SECONDARY AND PANEL/TRIM ITEMS MAY BE NECESSARY TO ENSURE PROPER FIT. SUCH WORK IS CONSIDERED A NORMAL PART OF METAL BUILDING ERECTION. G.W.B. WILL NOT HONOR BACKCHARGES FOR MINOR FIELD WORK. ANCHOR BOLT DIAMETERS HAVE BEEN DESIGNED BY THE METAL BUILDING ENGINEER BASED ON AISC METHOD WITH COMBINED SHEAR AND TENSION. DEVELOPMENT, EMBEDMENT AND HOOK LENGTH OF ANCHOR BOLTS IN THE CONCRETE ARE DESIGN RESPONSIBILITY OF OTHERS. ALSO DESIGN OF SHEAR ANGLES, TENSION PLATES, HAIRPINS, AND ANY OTHER EMBEDDED MATERIAL IN THE CONCRETE SHALL BE DESIGNED AND PROMOTED BY OTHERS NOTE: ANCHOR BOLT PROJECTION IS FROM BOTTOM OF BASE PLATE. | CUSTOMER NAME: | ← | ISSNE | DATE DWN | |--|-------------------------------|----------|--------------| | PROJECT NAME: | <u>/</u> _\ | APPROVAL | 02/04/21 MEZ | | PROJECT LOCATION: | | PERMIT | 02/07/24 AA | | PROJECT COUNTY: | | ERECTION | 02/07/24 PKD | | PROJECT END USE: | | | | | CUSTOMER PHONE NUMBER: | | | | | CUSTOMER EMAIL: | | | | | SCALE: N.T.S. | | | | | | 3033 S. PARKER RD 12 FLOOR | | | | | AURORA CO 80014 | | | | | | | | | SHEET NUMBER: | PHONE: (800)-497-2135 | | | | 4 OF 1 | WWW.GREATWESTERNBUILDINGS.COM | | | | JOB NUMBER 93299, 93300, 93301, 93302, 93303 | | | | | מוננ בונים | | | | | ANCHOR BOLT DETAILS | LS | | | THIS SEAL PERTAINS ONLY TO THE MATERIALS DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDINGS WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH. | RIGID | FRAME: | | MAXIMUM | REACTION | S, ANC | HOR BOLT | S, & BAS | E PLATE | ES | | | | | |-------------|----------|------------|--------------|-----------------------|-----------------------|----------------|--------------|------------|--------------|---------------|-----------------------|-------|---------------| | Frm
Line | | Load
Id | Hmax
H | umn_Reac
V
Vmax | tions(k
Load
Id |)
Hmin
H | V
Vmin | Bol
QTY | t(in)
DIA | Base
Width | e_Plate(in)
Length | Thick | Grout
(in) | | 2* | D | 1 | 10.7 | 15.0 | 2
4 | -5.0
-1.9 | -6.3
-6.3 | 4 | 0.750 | 6.000 | 10.50 | 0.375 | 0.0 | | 2* | Α | 3
1 | 5.0
-10.7 | -6.3
15.0 | 1
5 | -10.7
1.9 | 15.0
-6.3 | 4 | 0.750 | 6.000 | 10.50 | 0.375 | 0.0 | | 2* | FRAME li | nes: | 2 3 4 | | | | | | | | | | | | RIGID | FRAN | νE: | BASI | C COLUN | IN REACT | 10NS (k) |) | | | | | | | |---------------------------|--------------------------|------------------------------|----------------------------------|--------------------------------|---------------------------------|-------------------------------|------------------------------------|-------------------------------|-----------------------------|--------------------------------|-----------------------------------|-------------------------------|----------------------------------| | FRAME
Line
2*
2* | Column
Line
D
A | Horz
1.2
–1.2 | -Dead
Vert
1.8
1.8 | -—-Coll
Horz
0.5
-0.5 | ateral—
Vert
0.6
0.6 | Horz
9.1
-9.1 | -Live
Vert
12.5
12.5 | Horz
4.5
-4.5 | -Snow
Vert
6.2
6.3 | Wind
Horz
-9.6
4.3 | I_Left1-
Vert
-12.3
-9.5 | -Wind_
Horz
-4.3
9.6 | Right1-
Vert
-9.5
-12.3 | | FRAME
Line
2*
2* | Column
Line
D
A | Wind
Horz
-7.5
2.2 | l_Left2-
Vert
-7.0
-4.2 | -Wind_
Horz
-2.2
7.5 | Right2-
Vert
-4.2
-7.0 | Wind
Horz
-4.4
5.6 | I_Long1-
Vert
-12.3
-10.5 | Wind
Horz
-5.6
4.4 | Vert | -Seism
Horz
-0.2
-0.2 | ic_Left
Vert
-0.1
0.1 | Seismid
Horz
0.2
0.2 | :_Right
Vert
0.1
-0.1 | | FRAME
Line
2*
2* | Column
Line
D
A | -Seism
Horz
0.0
0.0 | vert
Vert
-0.3
-0.3 | -MIN_S
Horz
4.5
-4.5 | NOW
Vert
6.2
6.2 | F1UNB_
Horz
3.7
-3.7 | SL_L-
Vert
5.9
3.5 | F1UNB_
Horz
3.7
-3.7 | SL_R-
Vert
3.5
5.9 | | | | | | 2* | FRAME lir | nes: | 2 3 4 | | | | | | | | | | | | NOTES FOR REACTIONS | | |--|-------------------| | | | | Building reactions are based on | | | the following building data:
Width (ft) | = 50.00 | | Length (ft) | = 100.00 | | Eave Height (ft) | = 10.00/10.00 | | Roof Slope (rise/12) | = 3.0:12/3.0:12 | | Dead Load (psf) | = 2.00 | | Collateral Load (psf) | = 1.00 | | Live Load (psf) | = 20.00 | | Snow Load (psf) | = 10.00 | | Ultimate wina Speea (mpn) | = 115.00 | | Wind Code | = IBC-18
= C | | Exposure
Closed/Open | = C
= Enclosed | | Importance Wind | = 1.00 | | Importance Seismic | = 1.00 | | Seismic Zone | = B | | Seismic Coeff (Fa*Ss) | = 0.27 | | ID Description | | | ib bescription | | | | • | | 1 Dead+Collateral+Live | | | 1 | | | 3 0.6Dead+0.6Wind_Right1 | | | 4 0.6Dead+0.6Wind_Long1L | | | 5 | ind Long1 | | 7 0.6Dead+0.6Wind_Daction+0.6Wind | Mind Longil | | 8 0.6Dead+0.6Wind_Left1+0.6Wind | Suction | | 9 0.6Dead+0.6Wind_Right1+0.6Win | | | 10 0.6Dead+0.6Wind_Pressure+0.6V | Vind_Long2L | | 11 0.6Dead+0.6Wind_Suction+0.6Wi | | | | - | | # Reactions(k) Panel_Shear — Wall — Col — Wind — Seismic — (lb/ft) | | | | | | | | | | | | | | |---|-------------|--------------------------|------------|------------|------------|------------|------|------|--|--|--|--|--| | Loc | Line | Line | Horz | Vert | Horz | Vert | Wind | Seis | | | | | | | L_EW
F SW | 1
A | C,B | 1.7
2.9 | 1.0
1.0 | 0.2
0.8 | 0.1
0.3 | | | | | | | | | R_EW
B_SW | A
5
D | C,B
3,4
B,C
4,3 | 1.7
2.9 | 1.0
1.0 | 0.2
0.8 | 0.1
0.3 | | | | | | | | | ANCHO | R BOLT | SUMMA | \RY | |--------------|------------------|--------------|--------------| | QTY | LOCATE | DIA
(in) | TYPE | | O 16
Ø 24 | ENDWALL
FRAME | 5/8"
3/4" | A307
A307 | | ENDW | /ALL | COLU | JMN: | | BASI | COLUN | IN REACT | IONS (k |) | | | | | | | | | |---------------------------------|---------------------------------|--|---|--|--|---|--|--|-------------------------------------|---|--|--|--|--|--|---|---| | Frm
Line
1
1
1 | Col
Line
D
C
B
A | Dead
Vert
0.2
0.7
0.7
0.2 | | Collat
Vert
0.1
0.3
0.3 | Live
Vert
1.4
4.9
4.9
1.4 | | Snow
Vert
0.7
2.5
2.5
0.7 | Wind_
Horz
0.0
-1.7
0.0
0.0 | _Left1
V
-1
-7
-2
-1 | '.3
2.9 | Wind_R
Horz
0.0
0.0
1.7
0.0 | ight1
Vert
-1.7
-2.9
-7.3
-1.8 | Wind_Le
Horz
0.0
-1.7
0.0
0.0 | eft2
Vert
-0.9
-5.5
-1.2
-0.8 | Wind_R
Horz
0.0
0.0
1.7
0.0 | ight2
Vert
-0.8
-1.2
-5.5
-0.9 | Wind
Press
Horz
-0.8
-2.4
-2.4 | | Frm
Line
1
1
1
1 | Col
Line
D
C
B
A | Wind
Suct
Horz
0.9
2.6
2.6
0.9 | | Wind_L
Horz
0.0
0.0
0.9
0.9 | ong1
Vert
-2.4
-5.2
-4.2
-1.4 | Wind
Horz
0.0
-0.9
0.0
0.0 | _Long2
Vert
-1.4
-4.2
-5.2
-2.4 | S
Ho
0.0
-0.
0.0 |)
2
) | ft
Vert
0.0
-0.2
0.2
0.0 | Seis.
Horz
0.0
0.0
0.2
0.0 | _Right
Vert
0.0
0.2
-0.2
0.0 | Seis
Long
Vert
0.0
0.0
0.0 | - M
Hor
0.0
0.0
0.0 | 0.
2.
2. | rt
7
5
5 | | | Frm
Line
1
1
1
1 | Col
Line
D
C
B
A | E1UNE
Horz
0.0
0.0
0.0
0.0 | B_SL_L
Ve
0.6
2.8
1.2
0.1 | rt
6
3
2 | E1UNB_S
Horz
0.0
0.0
0.0
0.0 | L_R-
Vert
0.1
1.2
2.8
0.6 | | | | | | | | | | | | | Frm
Line
5
5
5
5 | Col
Line
A
B
C | Dead
Vert
0.2
0.7
0.7
0.2 | | Collat
Vert
0.1
0.3
0.3 | Live
Vert
1.4
4.9
4.9
1.4 | | Snow
Vert
0.7
2.5
2.5
0.7 | Wind_
Horz
0.0
-1.7
0.0
0.0 | _Left1
V
-1
-7
-2
-1 | '.3
?.9 | Wind_R
Horz
0.0
0.0
1.7
0.0 | light1
Vert
-1.7
-2.9
-7.3
-1.8 | Wind_Le
Horz
0.0
-1.7
0.0
0.0 | eft2
Vert
-0.9
-5.5
-1.2
-0.8 | Wind_R
Horz
0.0
0.0
1.7
0.0 | ight2
Vert
-0.8
-1.2
-5.5
-0.9 | Wind
Press
Horz
-0.8
-2.4
-2.4 | | Frm
Line
5
5
5
5 | Col
Line
A
B
C | Wind
Suct
Horz
0.9
2.6
2.6
0.9 | | Wind_L
Horz
0.0
0.0
0.9
0.0 | ong1
Vert
-2.4
-5.2
-4.2
-1.4 | Wind
Horz
0.0
-0.9
0.0
0.0 | _Long2
Vert
-1.4
-4.2
-5.2
-2.4 | |)
2
) | ft
Vert
0.0
-0.2
0.2
0.0 | Seis,
Horz
0.0
0.0
0.2
0.0 | _Right
Vert
0.0
0.2
-0.2
0.0 | Seis
Long
Vert
0.0
0.0
0.0 | - M
Hor
0.0
0.0
0.0 | 0.
2.
2. | rt
7
5
5 | | | Frm
Line
5
5
5
5 | Col
Line
A
B
C
D | E2UN
Horz
0.0
0.0
0.0
0.0 | B_SL_L
Ve:
0.6
2.8
1.2
0.1 | rt
6
3
2 | E2UNB_S
Horz
0.0
0.0
0.0
0.0 | L_R-
Vert
0.1
1.2
2.8
0.6 | | | | | | | | | | | | | ENDW | /ALL | COLU | JMN: | | MAXIM | UM REA | CTIONS, | ANCHOR | BOLTS | S, & B/ | ASE PLA | TES | | | | | | | Frm
Line | | | Load
Id | Hmax
H | Column_R
V V | Lo | àd ´ Hmi | | V
min | -
Bo
QTY | olt(in)
DI/ | | use_Plate(
Lengt | | Grou
(in) | | | | 1 | D | | 6
1 | 0.5
0.0 | | | | | -1.3
-1.3 | 2 | 0.625 | 3.500 | 8.000 | 0.250 | 0.0 |) | | | 1 | С | | 8
1 | 1.6
0.0 | -4 | .0 | ′ – 1. | 4 | -2.7
-4.0 | 2 | 0.625 | 3.500 | 8.000 | 0.250 | 0.0 |) | | | 1 | В | | 9
1 | 1.6
0.0 | 5. | 9 9 | | 6 | -2.7
-4.0 | 2 | 0.625 | 3.500 | 8.000 | 0.250 | | | | | 1 | Α | | 11
1 | 0.5
0.0 | 1. | 7 1 | 0 –0
1 0. | 5 | -1.3
-1.3 | 2 | 0.625 | | | | | | | | 5 | A | | 6
1 | 0.5
0.0 | 1. | 7 6 | 0. | 5 | -1.3
-1.3 | 2 | 0.625 | | | | | | | | 5 | В | | 8
1 | 1.6
0.0 | 5. | 9 8 | 3 1. | 6 | -2.7
-4.0 | 2 | 0.625 | | | | | | | | 5 | С | | 9 | 1.6
0.0 | 5. | 9 9 | 0 –1.
1. | 6 | -2.7
-4.0 | 2 | 0.625 | | | | | | | | 5 | D | | 11
1 | 0.5
0.0 | | ა 1
7 1 | 0 –0
1 0. | 5 | -1.3
-1.3 | 2 | 0.625 | 3.500 | 8.000 | 0.250 |) 0.0 | J | | THIS SEAL PERTAINS ONLY TO THE MATERIALS DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDINGS WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH. 3033 S. PARKER RD 12 FLOOR AURORA. CO 80014 PHONE: (800)-497-2135 WWW.GREATWESTERNBUILDINGS.COM REACTIONS BOL ANCHOR 93300, 93301, 93302, 93303 93299, 9P 2 ROOF FRAMING PLAN THIS SEAL PERTAINS ONLY TO THE MATERIALS DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH. PLAN FRAMING ROOF 93300, 93301, 93302, 93303 93299, OF S