GENERAL NOTES FABRICATION SHALL BE IN ACCORDANCE WITH METAL BUILDING SUPPLIER, STANDARD PRACTICES IN COMPLIANCE WITH THE APPLICABLE SECTIONS, RELATING TO DESIGN REQUIREMENTS AND ALLOWABLE STRESSES OF THE LATEST EDITION OF THE "AWS STRUCTURAL WELDING CODE D1.1 | 1.2 | MATERIALS | ASTM DESIGNATION | MIN. YIELD STRENGTH | |-----|-------------------------------------|------------------|------------------------------| | | HOT ROLLED STEEL SHAPES (W, & C) | A572 | Fy = 50 KSI | | | HOT ROLLED STEEL ANGLES (L) | A36 | Fy = 36 KSI | | | STEEL PIPES | A500 | Fy = 42 KSI | | | STRUCTURAL TUBING | A500 | Fy = 42 KSI | | | STRUCTURAL STEEL WEB PLATE | A572/A1011 | $F_y = 50 \text{ KSI}$ | | | STRUCTURAL STEEL FLANGE PLATES/BARS | A529/A572 | $F_y = 55 \text{ KSI}$ | | | COLD FORMED LIGHT GAGE | A653/A1011 | Fy = 55 KSI | | | ROOF & WALL SHEETS | A792/A653 | $F_{y} = 50, 80 \text{ KSI}$ | | | CABLE BRACE | A475 - TYPE 1 | EXTRA HIGH STRENGTH | | | ROD BRACE | A36 | Fy = 36 KSI | MIN. TENSILE STRENGTH Fu = 60 KSI Fu = 120 KSI Fu = 105 KSI A325-TYPE 1 A325-TYPE 1 HIGH STRENGTH BOLTS (1" & LESS) HIGH STRENGTH BOLTS (>1"ø TO 1 1/2"ø) A325-TYPE 1 ANCHOR BOLTS (NOT SUPPLIED BY M.B.S.) A36/A307/F1554 Fu = 60 KSI PRIMER SHOP PRIMER PAINT IS A RUST INHIBITIVE PRIMER WHICH MEETS THE END PERFORMANCE OF FEDERAL SPECIFICATION SSPC NO. 15 AND IS GRAY OXIDE IN COLOR. THIS PAINT IS NOT INTENDED FOR LONG TERM EXPOSURE TO THE ELEMENTS. METAL BUILDING SUPPLIER IS NOT RESPONSIBLE FOR ANY DETERIORATION OF THE SHOP PRIMER PAINT AS A RESULT OF MESPONSIBLE FOR ANY DELEMENTATION OF THE STOP FRIMER PAINT AS A RESULT OF IMPROPER HANDLING AND/OR JOBSITE STORAGE. METAL BUILDING SUPPLIER SHALL NOT BE RESPONSIBLE FOR ANY FIELD APPLIED PAINT AND/OR COATINGS. (AISC CODE OF STANDARD PRACTICE, LATEST EDITION). NOMINAL THICKNESS OF PRIMER WILL BE 1 MIL UNLESS OTHERWISE SPECIFIED IN CONTRACT .4 GALVANIZED OR SPECIAL COATINGS: SEE CONTRACT DOCUMENTS 1.5 ALL BOLTS ARE 1/2"ø x 0'-1 1/4" A307 EXCEPT: A) ENDWALL RAFTER SPLICE - 5/8"ø x 0'-1 3/4" A325-N B) ENDWALL COLUMN TO RAFTER CONNECTION - (SEE WALL ELEVATION) C) MAIN FRAME CONNECTIONS — SEE CROSS SECTION D) FLANGE BRACECONNECTIONS — 1/2"ø x 0'-1 1/4" A325 NOTE: WASHERS ARE NOT SUPPLIED UNLESS NOTED OTHERWISE ON DRAWING ### .6 A325 BOLT TIGHTENING REQUIREMENTS ALL HIGH STRENGTH BOLTS ARE A325-N UNLESS SPECIFICALLY NOTED OTHERWISE. HOLES ARE NOT SLOTTED AND DESIGN IS BEARING CONNECTION. STRUCTURAL BOLTS SHALL BE TIGHTENED BY THE "TURN-OF-THE-NUT" METHOD IN ACCORDANCE WITH THE LATEST EDITION AISC "SPECIFICATION FOR STRUCTURAL JOINTS" USING ASTM A325 OR A490 BOLTS, WHEN SPECIFICALLY REQUIRED. A325-N BOLTS ARE SUPPLIED WITHOUT WASHER UNLESS OTHERWISE NOTED ON THE DRAWINGS. ALL BOLTED CONNECTIONS UNLESS NOTED ARE DESIGNED AS BEARING TYPE CONNECTIONS WITH BOLT THREADS NOT EXCLUDED FROM THE SHEAR PLANE BUILDINGS IN SEISMIC DESIGN CATEGORY C OR LOWER AND/OR WITH CRANE SYSTEMS 10 TONS OR LESS DO NOT REQUIRE TURN OF THE NUT PRE TENSIONING ## 1.7 CLOSURE STRIPS ARE FURNISHED (IF ORDERED) FOR APPLICATION: INSIDE- UNDER ROOF PANELS & BASE OF WALL PANELS BETWEEN WALL PANELS & EAVE/GABLE TRIM ERECTION NOTE: ALL BRACING, STRAPPING, & BRIDGING SHOWN AND PROVIDED BY M.B.S. FOR THIS BUILDING IS REQUIRED AND SHALL BE INSTALLED BY THE ERECTOR AS A PERMANENT PART OF THE STRUCTURE. IF ADDITIONAL BRACING IS REQUIRED FOR STABILITY DURING ERECTION, IT SHALL BE THE ERECTOR'S RESPONSIBILITY TO DETERMINE THE AMOUNT OF SUCH BRACING AND TO PROCURE AND INSTALL AS NEEDED ## 1.9 ERECTION AND UNLOADING NOT BY G.W.B. ## 1.10 SHORTAGES ANY CLAIMS OR SHORTAGES BY BUYER MUST BE MADE TO M.B.S. WITHIN FIVE (5) WORKING DAYS AFTER DELIVERY, OR SUCH CLAIMS WILL BE CONSIDERED TO HAVE BEEN WAIVED BY THE CUSTOMER AND DISALLOWED. CORRECTIONS OF ERRORS AND REPAIRS (MBMA 6.10) CLAIMS FOR CORRECTION OF ALLEGED MISTITS WILL BE DISALLOWED UNLESS M.B.S. SHALL HAVE RECIEVED PRIOR NOTICE THEREOF AND ALLOWED REASONABLE INSPECTION OF SUCH MISFITS. THE CORRECTION OF MINOR MISFITS BY THE USE OF DRIFT PINS TO DRAW THE COMPONENTS INTO LINE, MODERATE AMOUNTS OF REAMING, CHIPPING AND CUTTING, AND THE REPLACEMENT OF MINOR SHORTAGES OF MATERIAL ARE A NORMAL PART OF ERECTION AND ARE NOT SUBJECT TO CLAIM. NO PART OF THE BUILDING MAY BE RETURNED FOR ALLEGED MISFITS WITHOUT THE PRIOR APPROVAL OF M.B.S. # BUYER/END USE CUSTOMER RESPONSIBILITIES - IT IS THE RESPONSIBILITY OF THE BUYER/END USE CUSTOMER TO OBTAIN APPROPRIATE APPROVALS AND SECURE NECESSARY PERMITS FROM CITY, COUNTY, STATE, OR FEDERAL AGENCIES AS REQUIRED, AND TO ADVISE/RELEASE M.B.S. TO FABRICATE UPON RECEIVING - METAL BUILDING SUPPLIER (HEREAFTER REFERRED TO AS M.B.S.) STANDARD SPECIFICATIONS APPLY UNLESS STIPULATED OTHERWISE IN THE CONTRACT DOCUMENTS, M.B.S. DESIGN, FABRICATION, QUALITY CRITERIA, STANDARDS, PRACTICE, METHODS AND TOLERANCES SHALL GOVERN THE WORK WITH ANY OTHER INTERPRETATIONS TO THE CONTRARY NOTWITHSTANDING, IT IS UNDERSTOOD BY BOTH PARTIES THAT THE BUYER/FUND USE CUSTOMER IS RESPONSIBLE FOR CLARIFICATION OF INCLUSIONS OR EXCLUSIONS FROM THE ARCHITECTURAL PLANS AND/OR SPECIFICATIONS. N. CASE OF DISCPEDANCES BETWEEN M.B.S. STUILDINGLA, STEPL JANS AND DIANS FOR - 2.3 IN CASE OF DISCREPANCIES BETWEEN M.B.S. STRUCTURAL STEEL PLANS AND PLANS FOR OTHER TRADES, M.B.S. PLANS SHALL GOVERN. (SECTION 3 AISC CODE OF STANDARD - APPROVAL OF M.B.S. DRAWINGS AND CALCULATIONS INDICATE THE M.B.S. HAS CORRECTLY AFFROYAL OF MIS.3. BARWINGS AND CALCULATIONS INDUCATE THE M.B.S. HAS CORRECTED INTERPRETED AND APPLIED THE CONTRACT DOCUMENTS. THIS APPROVAL CONSTITUTES THE CONTRACTOR/OWNERS ACCEPTANCE OF THE M.B.S. DESIGN CONCEPTS, ASSUMPTIONS, AND LOADING. (SECTION 4 AISC CODE AND MBMA 3.3.3) - ONCE THE BUYER/END USE CUSTOMER HAS SIGNED M.B.S. APPROVAL PACKAGE AND THE PROJECT IS RELEASED FOR FABRICATION, CHANGES SHALL BE BILLED TO THE BUYER/ END USE CUSTOMER INCLUDING MATERIAL, ENGINEERING AND OTHER COSTS. AN ADDITIONAL FEE MAY BE CHARGED IF THE PROJECT MUST BE MOVED FROM THE FABRICATION AND - 2.6 THE BUYER/END USE CUSTOMER IS RESPONSIBLE FOR OVERALL PROJECT COORDINATION. ALL INTERFACE, COMPATIBILITY, AND DESIGN CONSIDERATIONS CONCERNING ANY MATERIALS NOT FIRNISHED BY M.B.S. AND M.B.S. STEEL SYSTEM ARE TO BE CONSIDERED AND COORDINATED BY THE BUYER/END USE CUSTOMER. SPECIFIC DESIGN CRITERIA CONCERNING THIS INTERFACE BETWEEN MATERIALS MUST BE FURNISHED BEFORE RELEASE FOR ABRICATION OR M.B.S. ASSUMPTIONS WILL GOVERN (AISC CODE OF STANDARD PRACTICE, - 2.7 IT IS THE RESPONSIBILITY OF THE BUYER/END USE CUSTOMER TO INSURE THAT M.B.S. PLANS COMPLY WITH THE APPLICABLE REQUIREMENTS OF ANY GOVERNING BUILDING AUTHORITIES. THE SUPPLYING OF SEALED ENGINEERING DATA AND DRAWINGS FOR THE METAL BUILDING SYSTEM DOES NOT IMPLY OR CONSTITUTE AN AGREEMENT THAT M.B.S. OR ITS DESIGN ENGINEERS ARE ACTING AS THE ENGINEER OF RECORD OR DESIGN PROFESSIONAL FOR A CONSTRUCTION PROJECT. THESE DRAWINGS ARE SEALED ONLY TO CERTIFY THE DESIGN OF THE STRUCTURAL COMPONENTS FURNISHED BY M.B.S. - 2.8 THE BUYER/END USE CUSTOMER IS RESPONSIBLE FOR SETTING OF ANCHOR BOLTS AND ERECTION OF STEEL IN ACCORDANCE WITH M.B.S. "FOR ERECTION" DRAWINGS ONLY. TEMPORARY SUPPORTS SUCH AS GUYS, BRACES, FALSEWORK, CRIBBING OR OTHER ELEMENTS REQUIRED FOR THE FRECTION OPERATION SHALL BE DETERMINED, FURNISHED AND INSTALLED BY THE FRECTOR. NO ITEMS SHOULD BE PURCHASED FROM A PRELIMINARY SET OF DRAWINGS, INCLUDING ANCHOR BOLTS, USE ONLY FINAL "FOR ERECTION" DRAWINGS FOR THIS USE. (AISC CODE OF STANDARD - 9 METAL BUILDING SUPPLIER IS RESPONSIBLE FOR THE DESIGN OF THE ANCHOR BOLTS TO PERMIT THE TRANSFER OF FORCES BETWEEN THE BASE PLATE AND THE ANCHOR BOLT IN SHEAR, BEARING AND TENSION, BUT IT IS NOT RESPONSIBLE FOR THE TRANSFER OF ANCHOR BOLT FORCES TO THE CONCRETE OR THE ADEQUACY OF THE ANCHOR BOLT IN RELATIONTO THE CONCRETE CONCRETE. UNLESS OTHERWISE NOTED PROVIDED IN THE ORDER DOCUMENTS, M.B.S. DOES NOT DESIGN AND IS NOT RESPONSIBLE FOR THE DESIGN, MATERIAL AND CONSTRUCTIONOF THE FOUNDATION OR FOUNDATION EMBEDMENTS. THE END USE CUSTOMER SHOULD BE ASSURE HIMSELF THAT ADEQUATE PROVISIONS ARE MADE IN THE FOUNDATION DESIGN FOR LOADS IMPOSED BY COLUMN REACTIONS OF THE BUILDING, OTHER IMPOSED LOADS, AND BEARING CAPACITY OF THE SOIL AND OTHER CONDITIONS OF THE BUILDING SITE. IT IS RECOMMENDED THAT THE ANCHORAGE AND FOUNDATION OF THE BUILDING BE DESIGNED BY A REGISTERED PROFESSIONAL ENGINEER EXPERIENCED IN THE DESIGN OF SUCH STRUCTURES. (LATEST MBMA LOW RISE BUILDING SYSTEMS MANULA!) - 2.10 NORMAL ERECTION OPERATIONS INCLUDE THE CORRECTIONS OF MINOR MISFITS BY MODERATE NORMAL ERECTION OFERATIONS INCLODE THE CORRECTIONS OF MINOR MISTERS BY MODERATE AMOUNTS OF REAMING, CHIPPING, WELDING OR CUTTING, AND THE DRAWING OF ELEMENTS INTO LINE THROUGH THE USE OF DRIFT PINS. ERRORS WHICH CANNOT BE CORRECTED BY THE FOREGOING MEANS OR WHICH REQUIRE MAJOR CHANGES IN MEMBER CONFIGURATION ARE TO BE REPORTED IMMEDIATELY TO M.B.S. BY THE BUYER/END USE CUSTOMER, TO ENABLE WHOEVER IS RESPONSIBLE EITHER TO CORRECT THE ERROR OR TO APPROVE THE MOST EFFICIENT AND ECONOMIC METHOD OF CORRECTON TO BE USED BY OTHERS. (AISIC CODE OF STANDARD DELECTOR AFTER ENTERING AND EXCHAPACTED FOR THE MOST EFFICIENT EXCHAPACT EXCHAPACTED FOR THE MOST EFFICIENT AND EXCHAPACT EXCHAPACTED FOR THE MOST EFFICIENT AND EXCHAPACT - 2.11 NEITHER THE FABRICATOR NOR THE BUYER/END USE CUSTOMER WILL CUT, DRILL OR OTHERWSE ALTER HIS WORK, OR THE WORK OF OTHER TRADES, TO ACCOMMODATE OTHER TRADES, UNLESS SUCH WORK IS CLEARLY SPECIFIED IN THE CONTRACT DOCUMENTS. WHENEVER SUCH WORK IS SPECIFIED, THE BUYER/END USE CUSTOMER IS RESPONSIBLE FOR FURNISHING COMPLETE INFORMATION AS TO MATERIALS, SIZE, LOCATION AND NUMBER OF ALTERATIONS PRIOR TO PREPARATION OF SHOP DRAWINGS. (AISC CODE OF STANDARD PRACTICE LATEST EDITION) - 2.12 <u>WARNING</u> IN NO CASE SHOULD GALVALUME STEEL PANELS BE USED IN CONJUNCTION WITH LEAD OR COPPER. BOTH LEAD AND COPPER HAVE HARMFUL CORROSIVE EFFECTS ON THE GALVALUME ALLOY COATING WHEN THEY ARE IN CONTACT WITH GALVALUME STEEL PANELS. EVEN RUN-OFF FROM COPPER FLASHING, WIRING, OR TUBING ONTO GALVALUME SHOULD BE - 2.13 SAFETY COMMITMENT METAL BUILDING SUPPLIER HAS A COMMITMENT TO MANUFACTURE QUALITY BUILDING COMPONENTS THAT CAN BE SAFELY ERECTED. HOWEVER, THE SAFETY COMMITMENT AND JOB SITE PRACTICES OF THE RECTOR ARE BEYOND THE CONTROL OF M.B.S. IT IS STRONGLY RECOMMENDED THAT SAFE WORKING CONDITIONS AND ACCIDENT PREVENTION PRACTICES BE THE TOP PRIORITY OF ANY JOB SITE. LOCAL, STATE, AND FEDERAL SAFETY AND HEALTH STANDARDS SHOULD ALWAYS BE FOLLOWED TO HELP INSURE WORKES SAFETY, MAKE CERTAIN ALL EMPOYEES KNOW THE SAFEST AND MOST PRODUCTIVE WAY OF ERECTING A BUILDING. EMERGENCY PROCEDURES SHOULD BE KNOWN TO ALL EMPLOYEES. DAILY MEETINGS HIGHLIGHTING SAFETY PROCEDURES ARE ALSO RECOMMENDED. THE USE OF HARD HATS, RUBBER SOLE SHOES FOR ROOF WORK, PROPER EQUIPMENT FOR HANDLING MATERIAL, AND SAFETY NETS WHERE APPLICABLE. ARE RECOMMENDED. WHERE APPLICABLE, ARE RECOMMENDED. - 2.14 ROOF DRAINAGE SYSTEMS (GUTTER, DOWNSPOUTS, ETC.) MUST BE FREE OF ANY OBSTRUCTION TO ENSURE SMOOTH OPERATION AT ANY GIVEN TIME. - 2.15 IT IS RECOMMENDED BY FACTORY MUTAL (REFERENCE B2.44) THAT ROOFS BE CLEARED OF SNOW WHEN HALF OF THE MAXIMUM SNOW DEPTH IS REACHED. THE MAXIMUM SNOW DEPTH CAN BE ESTIMATED BASED ON THE DESIGN SNOW LOAD AND THE DENSITY OF SNOW AND/OR ICE BUILDUP, SSE TABLE BELOW. | 20 16.60 8.30 25 17.25 8.62 30 17.90 8.95 35 18.55 9.28 40 19.20 9.60 45 19.85 9.92 50 20.50 10.25 55 21.15 10.58 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 80 24.40 12.20 | | (IN PSF) | EQUIVALENT SNOW HEIGHT AT ROOF (IN INCHES) | WHEN SNOW REMOVAL SHOULD START (IN INCHES) | |--|---|----------|--|--| | 30 17.90 8.95 35 18.55 9.28 40 19.20 9.60 45 19.85 9.92 50 20.50 10.25 55 21.15 10.58 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 | Ī | 20 | 16.60 | 8.30 | | 35 18.55 9.28 40 19.20 9.60 45 19.85 9.92 50 20.50 10.25 55 21.15 10.58 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 | | 25 | 17.25 | 8.62 | | 40 19.20 9.60 45 19.85 9.92 50 20.50 10.25 55 21.15 10.58 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 | | 30 | 17.90 | 8.95 | | 45 19.85 9.92 50 20.50 10.25 55 21.15 10.58 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 | | 35 | 18.55 | 9.28 | | 50 20.50 10.25 55 21.15 10.58 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 | | 40 | | | | 55 21.15 10.58 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 | L | 45 | 19.85 | 9.92 | | 60 21.80 10.90 65 22.45 11.22 70 23.10 11.55 75 23.75 11.88 | L | 50 | 20.50 | | | 65 22.45 11.22
70 23.10 11.55
75 23.75 11.88 | | 55 | 21.15 | 10.58 | | 70 23.10 11.55
75 23.75 11.88 | | | 21.80 | | | 75 23.75 11.88 | | 65 | 22.45 | | | | | | 23.10 | 11.55 | | 80 24.40 12.20 | L | | | | | | | 80 | 24.40 | 12.20 | FOR SNOW/ICE REMOVAL PROCEDURE, REFER TO METAL BUILDING SYSTEM MANUAL 2002 EDITION, SECTION A8.4, PAGE XI-A8-2 ### ENG. RTS RTS BUILDING LOADS THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH THE FOLLOWING AS INDICATED: DESIGN LOADS: DESIGN CODE / WIND CODE : IBC-21 OCCUPANCY / RISK CATEGORY : II-Normal **ENCLOSURE** : Enclosed ROOF DEAD LOAD (D) (PSF) : 2.00 ROOF COLLATERAL LOAD (C) (PSF) :1.00 WIND LOAD ULTIMATE WIND SPEED, (VULT) (MPH) : 115.00 WIND EXPOSURE CATEGORY : C INTERNAL PRESSURE COEFFICIENT, (GCpi) :0.18/-0.18WALL PANEL DESIGN WIND PRESSURE (PSF) : 23.78/-25.80 WIND ENCLOSURE CLASSIFICATION : Enclosed LIVE LOAD PRIMARY FRAMING (PSF) : 20.00 TRIB. AREA REDUCTION : No SECONDARY FRAMING (PSF) : 20.00 2135 TWESTERNBUILDIN 12 SNOW LOAD GROUND SNOW LOAD, (Pg) (PSF) . 20 00 80014 ROOF SNOW LOAD, (Pf) (PSF) : 20.00 SNOW EXPOSURE FACTOR, (Ce) PARKER : 1.00 SNOW IMPORTANCE FACTOR, (Is) :1.00 (800) THERMAL FACTOR, (Ct) :1.00 SEISMIC LOAD SEISMIC IMPORTANCE FACTOR, (Ie) :1.00 GRE ഗ് Ш PHONE: SITE CLASSIFICATION : D RSHE SPECTRAL RESPONSE ACCELERATION : Ss = 0.175 : S1 = 0.059SPECTRAL RESPONSE COEFFICIENTS : Sds = 0.186 : Sd1 = 0.093SEISMIC DESIGN CATEGORY ·R BASIC SEISMIC FORCE RESISTING SYSTEM :STEEL SYSTEM NOT SPECIFICALLY DETAILED FOR RESISTANCE Ó : RIGID FRAMES (OMF) :BRACED FRAMES (OCBF/OMF) TOTAL DESIGN BASE SHEAR, (V) (KIPS) :LONGITUDINAL = 1.19 \bigcirc :TRANSVERSE = 1.20 RESPONSE MODIFICATION FACTORS, (R) :RIGID FRAMES = 3.00 $\Omega = 3.00$ \bigcirc :SW X-BRACING = 3.00 $\Omega = 3.00$ 4 DING \cdot SW WIND BENT = 3.00 $\Omega = 3.00$ \sim Ó SEISMIC RESPONSE COEFFICIENTS, (Cs) :RIGID FRAMES = 0.0619:SW X-BRACING = 0.0619:SW WIND BENT = 0.0619 \bar{m} ANALYSIS PROCEDURE USED : EQUIVALENT LATERAL FORCE PROCEDURE OTHER LOADS/REQUIREMENTS **BUILDING DESCRIPTION:** WIDTH (FT) : 40.00 LENGTH (FT) .80.00EAVE HEIGHT AT BSW (FT):12.00 EAVE HEIGHT AT FSW (FT): 12.00 ROOF SLOPE AT BSW : 5.0:12 ROOF SLOPE AT FSW : 5.0:12 BAY SPACING (FT) :4 AT 20.00 **COVERING AND TRIMS: ROOF PANELS & TRIMS** PANEL TYPE :26 GA. PBR PANEL COLOR : GALVALUME TRIM COLORS GABLE /EAVE : CHARCOAL GRAY EAVE GUTTER : CHARCOAL GRAY WALL PANELS & TRIMS PANEL TYPE · 26 GA PRR PANEL COLOR : ASH GRAY THIS SEAL PERTAINS ONLY TO THE MATERIALS TRIM COLORS DESIGNED AND SUPPLIED BY GREAT WESTERN : CHARCOAL GRAY CORNER BUILDINGS. THE DRAWINGS AND THE METAL : CHARCOAL GRAY FRAMED OPENING BUILDING WHICH THEY REPRESENT ARE THE : CHARCOAL GRAY DOWNSPOUTS PRODUCT OF GREAT WESTERN BUILDINGS. : CHARCOAL GRAY RASE THE REGISTERED PROFESSIONAL ENGINEER WHOSE WAINSCOT PANELS & TRIMS SEAL AND SIGNATURE APPEARS ON THESE PANEL TYPE :26 GA. PBR DRAWINGS IS EMPLOYED BY GREAT WESTERN PANEL COLOR : CHARCOAL GRAY BUILDINGS AND DOES NOT SERVE AS OR TRIM COLORS : CHARCOAL GRAY REPRESENT THE OVERALL PROJECT ENGINEER OF INSULATION ROOF INSULATION :6" (R-19) WMP-VR RECORD AND SHALL NOT BE CONSTRUED AS WALL INSULATION : 6" (R-19) WMP-VR MINOR FIELD WORK OF STRUCTURAL, SECONDARY AND PANEL/TRIM ITEMS MAY BE NECESSARY TO ENSURE PROPER FIT. SUCH WORK IS CONSIDERED A NORMAL PART OF METAL BUILDING ERECTION. G.W.B. WILL NOT HONOR BACKCHARGES FOR MINOR FIELD WORK. ANCHOR BOLT DIAMETERS HAVE BEEN DESIGNED BY THE METAL BUILDING ENGINEER BASED ON AISC METHOD WITH COMBINED SHEAR AND TENSION. DEVELOPMENT, EMBEDMENT AND HOOK LENGTH OF ANCHOR BOLTS IN THE CONCRETE ARE DESIGN RESPONSIBILITY OF OTHERS. ALSO DESIGN OF SHEAR ANGLES, TENSION PLATES, HAIRPINS, AND ANY OTHER EMBEDDED MATERIAL IN THE CONCRETE SHALL BE DESIGNED AND PROVIDED BY OTHERS. NOTE: ANCHOR BOLT PROJECTION IS FROM BOTTOM OF BASE PLATE. 3033 S. PARKER RD 12 FLOOR AURORA. CO 80014 PHONE: (800)-497-2135 WWW.GREATWESTERNBUILDINGS.COM \Box 4 DETAILS BOLT ANCHOR 94152 ENG. RTS RTS RTS THIS SEAL PERTAINS ONLY TO THE MATERIALS DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS | RIGI | D F | RAME: | | MAXIMUM | REACTION | IS, ANCH | HOR BOLT | S, & BASE | E PLATE | S | | | | | |------|-----------|-------------|------------|-------------------|------------------------|----------|--------------|--------------|-------------|----------|---------------|----------------------|-------|---------------| | | rm
ine | Col
Line | Load
Id | Colu
Hmax
H | ımn_React
V
Vmax | | Hmin
H | V
Vmin | Bolt
QTY | (in)
 | Base
Width | _Plate(in)
Length | Thick | Grout
(in) | | 2 | | D | 1 | 4.1 | 9.7 | 4
6 | -2.2
0.4 | -1.0
-3.6 | 4 | 0.750 | 6.000 | 12.50 | 0.375 | 0.0 | | 2 | | А | 5
1 | 2.2
-4.1 | -1.0
9.7 | 1
7 | -4.1
-0.4 | 9.7
-3.6 | 4 | 0.750 | 6.000 | 12.50 | 0.375 | 0.0 | | RIGID | FRAME: | | MAXIMUM | REACTION | NS, ANCH | HOR BOL | TS, & BASI | E PLATE | ES | | | | | |-------------|-------------|------------|-------------|-----------------------|----------|--------------|--------------|-------------|--------------|---------------|-----------------------|-------|---------------| | Frm
Line | Col
Line | Load
Id | Hmax
H | umn_Reac
V
Vmax | | Hmin
H | V
Vmin | Bol-
QTY | t(in)
DIA | Base
Width | e_Plate(in)
Length | Thick | Grout
(in) | | 3 | D | 1 | 4.1 | 9.7 | 4
6 | -2.2
0.4 | -1.0
-3.6 | 4 | 0.750 | 6.000 | 12.50 | 0.375 | 0.0 | | 3 | Α | 5
1 | 2.2
-4.1 | -1.0
9.7 | 1
7 | -4.1
-0.4 | 9.7
-3.6 | 4 | 0.750 | 6.000 | 12.50 | 0.375 | 0.0 | | RIGID | FRAME: | | MAXIMUM | REACTION | IS, ANCI | HOR BOLT | S, & BASE | PLATE | :S | | | | | |-------------|-------------|------------|-------------|-----------------------|-----------------------|--------------|--------------|-------------|-------------|---------------|-----------------------|-------|---------------| | Frm
Line | Col
Line | Load
Id | Hmax
H | umn_Reac
V
Vmax | tions(k
Load
Id | Hmin
H | V
Vmin | Bol:
QTY | (in)
DIA | Base
Width | e_Plate(in)
Length | Thick | Grout
(in) | | 4 | D | 1 | 4.1 | 9.7 | 4
2 | -2.2
-2.2 | −1.0
−2.8 | 4 | 0.750 | 6.000 | 12.50 | 0.375 | 0.0 | | 4 | Α | 5
1 | 2.2
-4.1 | -1.0
9.7 | 1 3 | -4.1
2.2 | 9.7
-2.8 | 4 | 0.750 | 6.000 | 12.50 | 0.375 | 0.0 | | Wa | II — | – Col | ± | Reacti | ons(k)
- —Sei | smic - | Panel_
- (lb/ | | | |------------------------------|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------|------|------| | Loc | Line | Line | Horz | Vert | Horz | Vert | Wind | Seis | Not- | | L_EW
F_SW
R_EW
B_SW | 1
A
5
D | D,C
2,3
A,B
3,2 | 1.7
1.3
1.7
2.6 | 2.2
1.4
2.2
1.3 | 0.2
0.3
0.2
0.6 | 0.2
0.3
0.2
0.3 | | | (b | | ANCHO | R BOLT | SUMMA | \RY | | |-----------------------------|------------------------------------|-------------------------------------|------------------------------|--| | QTY
○ 16
○ 16
○ 24 | LOCATE
JAMB
ENDWALL
FRAME | DIA
(in)
5/8"
5/8"
3/4" | A307
A307
A307
A307 | | Reactions for seismic represent shear force, Eh | RIGIE | FRAM | 1E: | BASI | IC COLUM | IN REACT | IONS (k |) | | | | | | | |-------------------------|--------------------------|--------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|---------------------------------|--------------------------------|---------------------------------| | | Column
Line
D
A |
Horiz
0.5
-0.5 | | | oteral—
Vert
0.4
0.4 | Horiz | Vert | Horiz | | Wind
Horiz
-4.2
-1.0 | _Left1-
Vert
-5.9
-4.4 | Horiz
1.0 | Right1-
Vert
-4.4
-5.9 | | FRAME
Line
2
2 | Column
Line
D
A | Wind
Horiz
-4.2
-1.0 | _Left2-
Vert
-3.0
-1.5 | -Wind_
Horiz
1.0
4.2 | Vert | Horiz
0.1 | Vert | Wind
Horiz
-1.0
-0.1 | I_Long2-
Vert
-6.8
-7.3 | -Seismi
Horiz
-0.1
-0.1 | ic_Left
Vert
-0.1
0.1 | Seismic
Horiz
0.1
0.1 | Vert | | Line
2 | Column
Line
D
A | | Vert | Horiz | SL_L-
Vert
7.3
4.4 | | SL_R-
Vert
4.4
7.3 | | | | | | | | FRAME
Line
3 | Column
Line
D
A | Horiz | Vert | Horiz | Vert | Horiz
3.4 | Vert | Horiz | -Snow
Vert
8.0
8.0 | Horiz
-4.2 | _Left1-
Vert
-5.9
-4.4 | Horiz
1.0 | Right1-
Vert
-4.4
-5.9 | | | Line
D | | _Left2-
Vert
-3.0
-1.5 | Horiz
1.0 | Right2-
Vert
-1.5
-3.0 | Horiz
0.1 | Vert | Horiz
-1.0 | I_Long2-
Vert
-6.8
-7.3 | -Seismi
Horiz
-0.1
-0.1 | Vert
-0.1 | Seismic
Horiz
0.1
0.1 | Vert | | | Column
Line
D
A | -Seismi
Horiz
0.0
0.0 | ic_Long
Vert
-0.3
-0.3 | | _SL_L-
Vert
7.3
4.4 | F2UNB_
Horiz
2.6
–2.6 | _SL_R-
Vert
4.4
7.3 | | | | | | | | Line
4 | Column
Line
D
A | | Vert | | oteral—
Vert
0.4
0.4 | | -Live
Vert
8.0
8.0 | Horiz | -Snow
Vert
8.0
8.0 | | _Left1-
Vert
-5.9
-4.4 | Horiz
1.0 | Right1-
Vert
-4.4
-5.9 | | | Column
Line
D
A | Horiz
-4.2 | _Left2-
Vert
-3.0
-1.5 | Horiz | Vert
−1.5 | Horiz
0.1 | I_Long1-
Vert
-5.9
-5.5 | Horiz | Vert
−5.5 | -Seismi
Horiz
-0.1
-0.1 | ic_Left
Vert
-0.1
0.1 | Seismic
Horiz
0.1
0.1 | Vert
0.1 | | Line
4 | | F3UNB_
Horiz
2.6
-2.6 | Vert | F3UNB_
Horiz
2.6
-2.6 | Vert | | | | | | | | | | NOTES | FOR REACTIONS | | | |---|---|--|---| | the · | ling reactions are based on following building data: Width (ft) Length (ft) Eave Height (ft) Roof Slope (rise)(12) Dead Load (psf) Collateral Load (psf) Live Load (psf) Snow Load (psf) Ultimate Wind Speed (mph) Wind Code Exposure Closed/Open Importance Wind Importance Seismic Seismic Zone Seismic Coeff (Fa*Ss) | =
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
= | 40.00
80.00
12.00/12.00
5.0:12/5.0:12
2.00
1.00
20.00
20.00
115.00
IBC-21
C
Enclosed
1.00
1.00
1.00 | | ID
— | Description | | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 0.6Dead+0.6Wind_Right1+0.6'
0.6Dead+0.6Wind_Pressure+C
Dead+Collateral+E1UNB_SL_L
0.6Dead+0.6Wind_Suction+0.1
Dead+Collateral+E1UNB_SL_F | ind_Suction
0.6Wind_Long
.45Wind_Rig
Wind_Suction
0.6Wind_Long
6Wind_Long
1.6Wind_Long | g2L
pht2+0.45Wind_Suction+0.75Slide_Snov
in
g1L | DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS | ENDV | VALL | COLU | JMN: | | BASIC | COLUMN | REACTIC | ONS (k) | | | | | | | | | | |----------------------------|---------------------------------|--|-----------------------------------|--|--|--|---|--|--|---|---|---|---|---|--|---|--| | Frm
Line
1
1
1 | Col
Line
D
C
B
A | Dead
Vert
0.2
0.5
0.4
0.2 | | Collat
Vert
0.1
0.2
0.2
0.1 | Live
Vert
1.0
3.0
3.0 | Sno
Ver
1.0
3.0
3.0 | t | Wind_Le
Horz
-1.7
0.0
0.0
0.0 | eft1
Vert
-3.0
-0.2
-1.6
-1.5 | Wind_
Horz
0.0
1.7
0.0
0.0 | Right1
Vert
1.5
-4.6
-2.5
-0.7 | Wind_L
Horz
-1.7
0.0
0.0
0.0 | eft2
Vert
-2.3
0.5
-0.8
-0.8 | Wind_
Horz
0.0
1.7
0.0
0.0 | Right2
Vert
2.2
-3.8
-1.8
0.0 | Wind
Press
Horz
-0.7
-2.0
-2.0
-0.7 | | | Frm
Line
1
1
1 | Col
Line
D
C
B
A | Wind
Suct
Horz
0.8
2.2
2.2
0.8 | | Wind_L
Horz
0.0
0.8
0.0
0.0 | Vert | Wind_Lo
Horz
-0.8
0.0
0.0 | ng2
Vert
-2.3
-0.4
-2.5
-1.9 | Seis
Horz
-0.2
0.0
0.0 | Left
Vert
-0.2
0.2
0.0
0.0 | Sei
Hor
0.0
0.2
0.0
0.0 | 0.3
-0.3
0.0 | Seis
Long
Vert
0.0
0.0
0.0 | E1 ¹
Ho
0.6
0.6
0.0 | 0 1
0 3
0 1 | _L-
/ert
.0
3.4
.3 | | | | Frm
Line
1
1
1 | Col
Line
D
C
B
A | E1UNI
Horz
0.0
0.0
0.0
0.0 | B_SL_F
Ve
0.:
1.3
3.4 | ert
2
3
4 | | | | | | | | | | | | | | | Frm
Line
5
5
5 | Col
Line
A
B
C
D | Dead
Vert
0.2
0.5
0.4
0.2 | | Collat
Vert
0.1
0.2
0.2
0.1 | Live
Vert
1.0
3.0
3.0
1.0 | Sno
Ver
1.0
3.0
3.0 | t | Wind_Le
Horz
-1.7
0.0
0.0
0.0 | eft1
Vert
-3.0
-0.2
-1.6
-1.5 | Wind_
Horz
0.0
1.7
0.0
0.0 | Right1
Vert
1.5
-4.6
-2.5
-0.7 | Wind_L
Horz
-1.7
0.0
0.0
0.0 | eft2
Vert
-2.3
0.5
-0.8
-0.8 | Wind_
Horz
0.0
1.7
0.0
0.0 | Right2
Vert
2.2
-3.8
-1.8
0.0 | Wind
Press
Horz
-0.7
-2.0
-2.0 | | | Frm
Line
5
5
5 | Col
Line
A
B
C
D | Wind
Suct
Horz
0.8
2.2
2.2
0.8 | | Wind_L
Horz
0.0
0.8
0.0
0.0 | Vert | Wind_Lo
Horz
-0.8
0.0
0.0
0.0 | ng2
Vert
-2.3
-0.4
-2.5
-1.9 | Seis
Horz
-0.2
0.0
0.0
0.0 | Left
Vert
-0.2
0.2
0.0
0.0 | Sei
Hor
0.0
0.2
0.0
0.0 | 0.3
-0.3
0.0 | Seis
Long
Vert
0.0
0.0
0.0 | E2
Ho
0.0
0.0
0.0 | 0 1
0 3
0 1 | _L-
/ert
.0
3.4
.3 | | | | Frm
Line
5
5
5 | Col
Line
A
B
C
D | E2UN
Horz
0.0
0.0
0.0
0.0 | B_SL_I
Ve
0.:
1.3
3.4 | ert
2
3
4 | | | | | | | | | | | | | | | ENDV | VALL | COLU | JMN: | | MAXIMUN | / REACTI | ONS, AN | NCHOR B | OLTS, & E | BASE PL | ATES | | | | | | | | Frn
Lin | | | Load
Id | Hmax
H | Column_Rec
V
Vmax | ctions(k
Load
Id |)
Hmin
H | V
Vmi | | Bolt(in)
Y [| Bo
DIA Width | ase_Platel
Lengt | (in)
h Thicl | Gro
k (ir | | | | | 1 | [| D | 8
10 | 0.5
0.4 | | 9
8 | -0.4
0.5 | -1
-1 | | 2 0.62 | 5 3.500 | 8.000 | 0.25 | 0 0 | 0.0 | | | | 1 | | С | 11
13 | 1.3
0.0 | 4.0 | 12
11 | -1.2
1.3 | -2 | 5 | | | | | | 0.0 | | | | 1 | | В | 14
15
14 | 1.3
0.0
0.5 | 4.0 | 9
11 | -1.2
1.3
-0.4 | -1 | .3 | | | | | | 0.0 | | | | 1 5 | | A
A | 1 8 | 0.5
0.5 | 1.3 | 9
14
9 | -0.4
0.5
-0.4 | -1 | .1 | | | | | |).0 | | | | 5 | | В | 10
11 | 0.4
1.3 | 2.0
-2.5 | 8
12 | 0.5
-1.2 | -1
-2 | :.1 2 | | | | | | 0.0 | | | | 5 | (| С | 16
14
17 | 0.0
1.3
0.0 | -1.3 | 11
9
11 | 1.3
-1.2
1.3 | -2
-1
-1 | .3 2 | 2 0.62 | 5 3.500 | 8.000 | 0.25 | 0 0 | 0.0 | | | | 5 | [| D | 14
1 | 0.5
0.0 | -1.1 | 9
14 | -0.4
0.5 | -1 | .1 2 | 2 0.62 | 5 3.500 | 8.000 | 0.25 | 0 C | 0.0 | | | DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH. SIDEWALL SHEETING & TRIM: FRAME LINE A PANELS: 26 GA. PBR - ASH GRAY [A] PANELS: 26 GA. PBR - CHARCOAL GRAY | | | FR/
QU | BOLT
FRAME
LOCAT
WF-1
WF-1 | 4
2
4
4
4
4 | 1 1 4 4 4 4 4 | 2
4
5
7
1 | ME LINE | / TABLE | |--------------------------------------|---|------------------------|--|---|--|--|---------|-------------| | | 2
1
1
1
1
2
2
2
4
1
1
1
1
1
1
1
2
2
2
2 | AME L
AN | ION
O WF | FL
FL
FL | FL
FL
FL
FL | FL
FL
FL | N PA | -
-
- | | | WF-1
WF-2
DJ-2
DJ-3
DJ-4
DJ-5
DJ-6
DH-2
E-1
E-2
E-3
E-4
G-7
G-8
G-9
G-10
G-11
G-12
G-13
G-14
G-15
G-16 | TABLE
INE A
MARK | A
-2
1-3 | 48
52
55
48
237 | -32R
-33R
-55
-48
-55 | 10
60
32
31
32L
33L | \RT | | | CONNECTION FRAME LINES QUAN 1 16 2 8 | W8X10 W8X18 8x25C16 8x25C16 8x25C16 8x25C16 8x25C16 8x25C16 8x25C16 L08E16-5 L08E16-5 L08E16-5 8X35Z16 8X25Z16 8X35Z16 8X25Z16 8X35Z16 | PART | QUAN TYP
8 A32
6 A32
6 A32 | 10'-4" 7'-2" 3'-4" 10'-3" 10'-2" 10'-2" | 11'-2"
8"
9'-3"
9'-2"
10'-7" | 12'-0"
10'-2"
12'-2"
11'-7"
11'-2"
8" | LENGTH | | | E A
MARK | 10'-4" 18'-7 7/16" 11'-6 3/8" 11'-6 3/8" 11'-6 3/8" 11'-6 3/8" 11'-6 3/8" 11'-6 3/8" 9'-11 1/2" 19'-11 1/2" 19'-11 1/2" 19'-11 1/2" 2'-7 11/16" 6'-3 7/8" 6'-3 7/8" 3'-11 11/16" 3'-11 11/16" 4'-3 7/8" 4'-3 7/8" 4'-3 7/8" 2'-7 11/16" | LENGTH | 5 5/8" 1 3/4"
5 5/8" 1 1/2" | TD51
TD52
TD51
TD51
TD51
TD199 | TD13
TD85
TD51
TD51
TD52
TD52 | TD40
TD74
TD15
TD15
TD13
TD85 | DETAIL | | | | CUSTOMER NAME: | | $\bigg] \in$ | | ISSUE | DATE DWN. | CHK. | ENG. | | | PROJECT NAME: | | | | APPROVAL | MEZ | MEZ R | RTS | | | PROJECT LOCATION: | \ | | | PERMIT | SB | AA R | RTS | | | PROJECT COUNTY: | | | <u> </u> | ERECTION | OGR | | RTS | | | PROJECT END LISE: CUSTOMER PHONE NUMBER: | | | | | | | | | | CUSTOMER EMAIL: | , [[
 | | | | | | | | | SCALE: N.T.S. | | | | | | | | | | (*) | 3033 S. | PARKER RD 12 | FLOOR | | | | | | | 7 | AURORA. | CO 80014 | | | | | | | | SHEET NUMBER: 10 OF 20 V | PHONE: | PHONE: (800)-497-2135
www.greatwesternbuildings.com | 35
DINGS, COM | | | | | | | | | | | | | | | | | SHEET TILE. SIDEWALL FRAMING & | TS. | EETING | | | - | _ | | THIS SEAL PERTAINS ONLY TO THE MATERIALS DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH. ENDWALL FRAMING: FRAME LINE 1 ENDWALL SHEETING & TRIM: FRAME LINE 1 PANELS: 26 GA. PBR - ASH GRAY [A] PANELS: 26 GA. PBR - CHARCOAL GRAY | TABLE
ME LINE 1
QUAN PART | LENGTH | DETAIL | CHK. ENG. MEZ RTS AA RTS OGR RTS | |--|---|--|---| | 4 FL-60
2 FL-21
1 FL-21L
1 FL-328L
1 FL-23
1 FL-21R | 10'-2"
11'-10"
11'-2"
9 1/2"
1'-4"
11'-2" | TD74
TD35
TD85
TD13 | DATE DWN. CH 05/13/22 MEZ ME 12/28/23 SB A 01/31/24 OGR OC | | 1 FL-328R
2 FL-48
1 FL-52
1 FL-50
4 FL-237 | 11'-2"
9 1/2"
3'-4"
3'-4"
3'-4"
10'-2" | TD13
TD51
TD52
TD52
TD199 | ISSUE APPROVAL PERMIT ERECTION | | BOLT TABLE
FRAME LINE 1
LOCATION
ER-1/ER-2
COLUMNS/RAFTER | QUAN TYPE 4 A325 2 A325 2 A325 | DIA LENGTH 5/8" 1 1/2" 5/8" 1 1/2" 5/8" 1 1/2" | FLOOR
DINGS.COM | | MEMBER TABLE FRAME LINE 1 QUAN MARK 1 EC-1 | PART L | LENGTH | 3033 S. PARKER RD 12 FLOOR
AURORA. CO 80014
PHONE: (800)-497-2135
WWW.GREATWESTERNBUILDINGS.COM | | 1 EC-2
1 EC-3
1 EC-4
1 ER-1
1 ER-2
2 DJ-1 | 8x25C14 2
8x25C14 2 | 10'-10 9/16"
15'-10 5/8"
15'-10 5/8"
10'-10 9/16"
21'-7 3/4"
21'-7 3/4"
3'-10 1/8" | 3033 S. P.A.
AURORA. C.
PHONE: (80
WWW.GREAT | | 1 DH-1
1 DS-1
2 G-1
2 G-2
2 G-3
1 G-4
1 G-5
2 G-6
1 CB-1
1 CB-2 | 8x25C16
8x25C16
8X35Z16
8X25Z16
8x25Z16
8X35Z16
8X35Z16
8X25Z16
8X25Z16
6X25Z16
8X25Z16 | 9,-10 1/8"
2'-11 1/2"
2'-11 1/2"
11'-7 15/16"
11'-7 15/16"
3'-8"
13'-11 1/2"
13'-11 1/2"
5'-1 11/16"
19'-7" | 12 OF 20 | | | 1 14
2 14
3 2 | | PROJECT NAME: PROJECT NAME: PROJECT LOCATION: PROJECT COUNTY: PROJECT FOUN USE: CUSTOMER ENAUL: SCALE: N. T.S. | | | FLANGE
FRAME
▽ID QU | | | | FRAME OID DI 3 SI 4 SI | ORK TABLE LINE 1 ETAIL DIMENSION 0202 2'-1 5/16" 0202 2'-10 1/8" 0202 3'-0 5/8" | 1 DIMENSION 2
8'-9 7/16"
6'-0 1/2" | | | | | | THIS SEAL PERTAINS ONLY TO THE MATERI DESIGNED AND SUPPLIED BY GREAT WESTE BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER SEAL AND SIGNATURE APPEARS ON THESE | DRAWINGS IS EMPLOYED BY GREAT WESTERN REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS BUILDINGS AND DOES NOT SERVE AS OR ENDWALL SHEETING & TRIM: FRAME LINE 5 PANELS: 26 GA. PBR - ASH GRAY [A] PANELS: 26 GA. PBR - CHARCOAL GRAY | TRIM
FRAM | TABLE
ME LINE S | 5 | | | | | | | ENG. | RTS | RTS | RTS | | | | | | | | | |--------------|--------------------------------|-----------------------------------|----------|--|---------------------------|--|-----------------------|----------------------|----------------|---------------|------------------------|-----------------|----------------|-----------------|-----------|--------------|-------------|-----------------------|------------------------|------------| | ◇ID
1 | QUAN
4 | PART
FL-60 | | LENGTH
10'-2" | | Т | ETAIL
D74 | | O.H. | MEZ | AA | OGR | | | | | | | | | | 2
3
4 | 2 1 1 | FL-21
FL-21L | -
RI | 111' 1∩" | | T | D35
D85
D13 | | DWN. | MEZ | SB | 0GR | | | | | | | | | | 5
6 | | FL-32
FL-23
FL-21F
FL-32 | 3 | 11'-2"
9 1/2"
1'-4"
11'-2"
9 1/2"
3'-4" | | Т | D85 | | DATE | 05/13/22 | 12/28/23 | 01/31/24 | | | | | | | | | | 7
8
9 | 1 2 1 | FL-32
FL-48
FL-52 | 3R | 9 1/2"
 3'-4"
 3'-4"
 3'-4"
 10'-2" | | T | D13
D51
D52 | | E | JVAL | AIT. | NOIT | | | | | | | | | | 10 | 1 4 | FL-50
FL-23 | 7 | 3'-4"
10'-2" | | T | D52
D199 | | ISSNE | APPROVAL | PERMIT | ERECTION | | | | | | | | | | | BOLT TAI
FRAME L | BLE
INE 5 | | | | | | | | | | | | | | | | | <u> </u> | | | | LOCATION
ER-1/ER
COLUMNS | | | QUAN
4 | TYPE
A325 | DIA 5/8" | 1 | ENGTH 1/2" | | | / | // | | \int | | FLOOR | | | | | | | COLUMNS
JAMBS/R | S/RAFTE
RAFTER | :R | 2 2 | A325
A325 | 5/8"
5/8"
5/8" | 1 | 1/2"
1/2"
1/2" |
 | / | ,
/ | /
/, | | | | 12 | | PHONE: (800)-497-2135 | 5 | | | | FRAM | ER TAB
E LINE | 5 | | | | | |] ` | | | | | <u></u> | \ | ER RD | 80014 | (800)-497-2135 | | | | | QUAN
1 | EC- | -1 | PART 8x25C16 | | LENGTH
10',-10 | 9/16" | | \mid \in | _ | \prec | | | <u> </u> | _ | PARKER | CO 8 | 300)-
TWFC |)

 - | IN C | | | 1 1 1 | EC-
EC-
EC- | - 3 | 8x25C12
8X35C14
8x25C16 | | 10'-10
15'-10
15'-10
10'-10
21'-7 3
21'-7 3
9'-10 1
2'-11 1 | 5/8"
5/8"
9/16" | | | \ | / | \ | 7 | | | Ś | | VE: (S | 7 | | | | 1 | ER- | -1
-2 | 8x25C14
8x25C14 | | 21'-7 3
21'-7 3 | 5/4"
5/4" | | | | ` | // | | \leq | | 3033 | AURORA. | PHONE: | | T.S. | | | 1 1 | DJ-
DH-
DS- | -1 | 8x25C16
8x25C16
8x25C16 | | 9 – 10 1
2'–11 1
2'–11 1 | /8
/2"
/2" | | | | | | | | | | | | | ()
 \& | | | 2
2
2 | G-
G-
G- | -1
-2 | 8X35Z16
8X25Z16
8X25Z16 | | 11'-7 1
11'-7 1 | 5/16"
5/16" | | | | | | | | | | | 000 | | Ž | | | 1 | G-
G- | -4
-5 | 8X35Z16
8X25Z16 | | 13'-11
13'-11 | 1/2"
1/2" | | | | | | | | | | | \
 | | FRAMING | | | 1 1 | G-
CB-
CB- | -1 | 8X25Z16
CB0250
CB0250 | | 2 - 11 1
2' - 11 1
11' - 7 1
11' - 7 1
3' - 8"
13' - 11
13' - 11
5' - 1 11
19' - 7"
16' - 0 1 | /16"
/4" | | | | | | | | | | | 1,3 |) 4 | - | | | | | | CONNI | | PLATES | / - | | | | | | UMBER: | | | | | | | DWALL | | | | | | □ID | QUAN | MARK | , | | NAME: | IAME: | OCATION: | COUNTY: | Z | EMAIL: | 1.T.S. | | | ABER: | æ | | | | | | | 1
2
3
4 | 14
14
2
4 | CL-103
CL-100
CL-109
CL-5 |) | | CUSTOMER NAME: | PROJECT NAME: | PROJECT LOCATION | PROJECT COUNTY: | CUSTOMER PHONE | CUSTOMER EMAIL: | SCALE: N. | | | SHEET NUMBER | JOB NUMBER | SHEET TIL | | | | | | | | E BRACE | | LE | MARK | | | | | | | | | | | | | | | | | FIE | LD WC | RK TABLE | ' | 6 | FB29. | <u> </u> | | | | | | | | | | | | | | | | FR
OII | AME L | | NSION | 1 DIN | MENSI | ON 2 | | | | | | | | | | | | | | | | 4 | - SD2 | 202 2′-1 | 5/16'
0 1/8'
0 5/8" | " 8'-
6'- | -9 7,
-0 1,
 | /16"
/2" | ' | ATERIA | | | | | | | | | | | | BL | IILD | ING | S. | ГНЕ | DRA | WIN | GS A | AND | THE N | ÆSTEF
ÆTAL
E THE | XI N | | | | | | | | | | | PR
TH | ROD
E I | UC ⁻
REG | T OF | GR
RED | EAT
PR | WE
OFE | STEF
SSIO | RN B
NAL | UILDIN
ENGIN | IGS.
IEER \ | VHOSE | ON T | HESE
STERI | V | DRAWINGS IS EMPLOYED BY GREAT WESTERN REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS BUILDINGS AND DOES NOT SERVE AS OR | | | | A PARKER RD 12 FINOR |
AURORA. CO 80014 |
17 OF 20 | WWW.GREAIWESIERNBUILDINGS.COM | | |--|--|--|----------------------|----------------------|--------------|-------------------------------|--| | | | | | | 00 | 7 | | DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH. | DATE DWN. CHK. | AL 05/13/22 MEZ MEZ | . 12/28/23 SB AA | IN 01/31/24 OGR OGR | | | | | | | | | | | | |----------------|---------------------|-------------------|---------------------|------------------|------------------------|-----------------|---------------|--------------------------------|----------------------------|------------------|-----------------------|-------------------------|-------|--------------| | ISSUE ISSUE | APPROVAL | PERMIT | ERECTION | | | | | 000 13 01 00 03 70 0 0 5 5 0 5 | JUSS S. MARKER RD IZ FLOOR | AURORA. CO 80014 | PHONE: (800)-497-2135 | WWW.GREAIWESIERINGS.COM | | | | CUSTOMER NAME: | PROJECT NAME: | PROJECT LOCATION: | PROJECT COUNTY: | PROJECT END USE: | CUSTOMER PHONE NUMBER: | CUSTOWER EMAIL: | SCALE: N.T.S. | N | ') | 4 | SHEET NUMBER: | | 94152 | SHEET IIILE: | DESIGNED AND SUPPLIED BY GREAT WESTERN BUILDINGS. THE DRAWINGS AND THE METAL BUILDING WHICH THEY REPRESENT ARE THE PRODUCT OF GREAT WESTERN BUILDINGS. THE REGISTERED PROFESSIONAL ENGINEER WHOSE SEAL AND SIGNATURE APPEARS ON THESE DRAWINGS IS EMPLOYED BY GREAT WESTERN BUILDINGS AND DOES NOT SERVE AS OR REPRESENT THE OVERALL PROJECT ENGINEER OF RECORD AND SHALL NOT BE CONSTRUED AS SUCH.